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mean-field approximation 
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Received 14 March 1989 

Abstract. The self-trapping of a light particle in a fluid is solved exactly in one dimension 
when the interaction between the light particle and fluid molecules is purely repulsive. It 
is shown that there is always at least one self-trapped state in the system. The uniqueness 
of the self-trapped state is proved for the ideal gas. In contrast, multiple trapped states 
are possible in the hard rod gas. 

1. Introduction 

It is well known that in a dense fluid a light particle (electron, positron or  positronium, 
hereafter LP) can be bound in self-trapped states. Experimental measurements of the 
decay rate of positrons [l] and positronium atoms [2] strongly support the existence 
of the self-trapped states in a broad region about the critical point of simple fluids. 
These states can be obtained as a solution of a self-consistent mean-field problem 
involving the wavefunction for the LP, $ ( r ) ,  and the density p ( r )  of the fluid in its 
vicinity. Moore et a1 [3] proved that, for an  ideal gas, the existence of the self-trapped 
state is determined by the value of a parameter arising from the normalisation condition. 
This constant becomes larger when either the coupling constant or  the average fluid 
density increases, o r  the temperature decreases. If this constant is less than a certain 
minimum, the LP does not have a self-trapped state. Recently, Reese and Miller [4] 
showed numerically that, for a real physical system, self-trapped states d o  not exist if 
the fluid density is too high or  too low. In [3] there is also some evidence which 
suggests that, in I D  systems, the self-trapped state always exists. To our knowledge 
the exact proof of this problem is still missing. 

In this paper we will give an analytical proof for the existence of a self-trapped 
state in any I D  system with a repulsive interaction between the L P  and fluid molecules. 
The paper is arranged as follows. Section 2 formally solves the non-linear Schrodinger 
equation. Section 3 gives the proof of the existence of the self-trapped state in a I D  

system. Section 4 addresses the uniqueness of this state in two specific systems, i.e. 
the ideal gas ( I C )  and  the hard rod gas ( H R ) .  It is shown that the trapped state is 
unique in the IC, whereas multiple solutions are possible in the HR. 

2. Formal solution to the differential equation 

This combined system of L P  and dense fluid can be described by the non-linear 

t Address after 1 October 1989: Courant Institute of Mathematical Science, New York University, New 
York, NY 10012, USA. 
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Schrodinger equation 

-( h2/2m)$”(x) + $(x) 1 dx’w(x - x’)p(x’) = E $ ( x ) .  (2.1) 

In equation (2.1), p ( x )  is the average fluid density and w(x-x‘) is the two-body 
interaction between the L P  and a fluid molecule; the interaction is not local. Equation 
(2.1) is formally no different than the usual Schrodinger equation. The integral 
5 dx’w(x-x’)p(x’) represents the average potential energy experienced by the L P  at x. 
Here, however, p ( x )  is influenced by the effective interaction of the LP on the fluid. 
Equation (2.1) can also be derived from either a path integral formulation [4] or a 
free-energy density functional approach [3]. A common simplification is to assume 
that w is short ranged compared with the length scale for variations in $, as it is in 
many real systems. Here we also adopt this assumption and approximate w by 

w ( x  - x’) = g6 (x - x’) (2.2) 

where 

g = J dx w(x) > 0. 

Equation (2.3) simplifies (2.1) to the local form 

because g@(x) acts like an  external potential for the fluid. The explicit dependence 
of p on $’ is available in very few systems, e.g. the H R  gas [5]. Even with the exact 
solution, the non-local relation [5] still prevents us from solving (2.4) exactly. Following 
the most popular treatments, we further assume that the local density approximation 
(LDA) is valid here. The LDA results in a local relation between p ( x )  and  $’(x) 

where p is the chemical potential of the fluid and pO is the fluid density when $(x)  = 0. 
Theoretically we can always invert (2.6) to obtain 

at least numerically. Then (2.4) becomes 

-(h2/2m)$”(x)  + gb(4?(x))$(x)  = E$(x). (2.8’) 

Following the scaling procedure in 31) systems [3,4], we perform the following 
transformations: 

These transformations change (2.8’) to a neat form 

(2.9a) 

(2.9b) 

( 2 . 9 ~ )  

(2.9d) 
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The construction of the first integral of (2.8) is routine 

(2.10) 

where the constant of integration has been determined by the conditions 

cp(+’o)  = c p ’ ( m )  =o.  (2.11) 

There is a simple mechanical analogue for (2.10) [3,6]. It is equivalent to the energy 
conservation law for a particle moving in a I D  system at position cp and time t .  The 
quantity in the large bracket looks like a time-independent potential (figure 1).  Equation 
(2.10) describes a state similar to that in a soliton problem [6], i.e. the particle is 
moving toward a position it can never reach in finite time. This state requires the 
potential energy at t = O  to be exactly the same as that at t = m .  Consequently, in 
contrast with 3~ systems, there can be at most one self-trapped state for a fixed E [3,4]. 
This state also requires a potential well which restricts the possible values of E. We 
will discuss this in more detail later on. 

The normalisation condition 

$’(x) d x  = 1 I 
requires that cp satisfies 

r 

I ( & ) =  cp2(t) dt=pg(2mgp,, /h2)”’ J 

(2.12) 

(2.13) 

according to equations (2.9). For a given equation of state, the dimensionless constant 
pg(2mgp0/ h’)”’ contains all of the required system parameters. It determines the 
eigenvalue E and, implicitly, the properties of the trapped state. The integral expressed 
in (2.13) can be transformed to an  integration over z=cp2 by making use of (2.10), 
the first integral of the non-linear Schrodinger equation. We find 

‘n 

I ( & )  = 1 dzz”’/[fl(z)-f,(z)]”’ 
J o  

1 

-0 .2  
0 0.5 1.0 

1p 

1.5 

(2.14) 

~ 

Figure 1. The  ‘potential energy’ V(cp)= &p2-2J: n(cp’)cp d 9  defined in (2.10). The  
minimum is determined by E = n(9’) .  Therefore O <  E < 1. 
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where the symmetry of cp about t = 0 has been taken into account and f, and fr are 
defined by 

f l ( z ) =  1; n ( z ' )  dz'  f i (  2 )  = EZ. (2.15) 

In (2.14), zo is a function of E and is determined by requiring that the kinetic energy 
( ( ~ ( 0 ) ~ )  be equal to 0, i.e. 

f l ( Z O )  - f X Z )  = 0. (2.16) 

This occurs for two values of t ,  the turning point and the origin of the classical orbit 
(see figures 1 and 2). Here we mean the non-trivial value which occurs at the turning 
point. 

In section 3 we will prove 

l imZ(E)=O 
f - 1  

lim I (  E )  = oc. 
F ' O  

( 2 . 1 7 ~ )  

(2.17b) 

This means that for any p o ,  T, m and g we can find at least one E which satisfies 
(2.14). The corresponding ICIF(x) then satisfies conditions (2.11) and is a self-trapped 
state. 

1.0 

0.8 
h, - 
U!- < 0.6 
I 

U. 

I 

2 0.4 
U!! 

0.2 

0 

Figure 2. The  graphical solution for z,,, which is indicated by the vertical line. The three 
curves are,  from bottom: f 2 ( z ) ,  . f ( z )  and  . f , ( z ) .  The function f ( z )  is as  defined in (3.4). 

3. Proof for the existence of the self-trapped state 

In  this section we present our main result; namely that the I D  system always has at 
least one self-trapped state if the interaction is repulsive. We first list some basic 
properties of f i(z) and f2(z). 
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(a )  f i(Z),  f i(Z) 3 0. 
(b)  n ( z ) s l  and s o f l ( z ) < z .  
(c) f ,(z)+constant ( z+co) .  
(d )  f l ( 0 )  = n(0) = 1. 
(e) f :(z)=n’(z)<O. 

Properties (b), (c) and  (d) are a consequence of the repulsive interaction. Property 
(c) further assumes that when z goes to infinity n(z)  goes to zero faster than l /z.  This 
assumption is usually satisfied because large z is the low-density (ideal gas) limit where 
n( z)  = exp( -z). 

Usually (2.16) for zo must be solved graphically (numerically) (figure 2). Some 
general behaviour, which is helpful in the later calculations, can be derived from the 
properties (a)-(e). 

(f) As mentioned above, for any positive E there is a trivial root z = O  which 
corresponds to t = CO. If 0 < E < 1 there is a non-trivial root zo which provides another 
point where the kinetic energy is equal to zero. To get localised states we require 
0 < & < 1 .  

(8) Zo(& + 0) + W .  
(h)  zo(&+1)+O. 
By using (a)-(h),  (2.17b) can be proved immediately: 

J O  

> [:dzz’/2/[(l -E)z] ’ / ’  (property (b  1 ) 

= zo/(l - & ) I / *  

>zo+CO ( & + O ) .  (3.1) 

The proof of equation ( 2 . 1 7 ~ )  is far more involved. To set it up, first we write 
down the explicit expressions for E ( z ~ ) ,  e’(z0) and &“(z0) where, as usual, the single 
prime and  the double prime represent the first and  second derivatives with respect to 
z,; when zo approaches zero the corresponding limits for &(z0) and its derivatives may 
be obtained as follows: 

E ( % )  =fl(zo)/zO+ n (z , J+  1 ( 3 . 2 ~ )  

E’(Z0) = n(zo)/zo -f1(Zo)/~S + n‘(0)/2 < 0 (3.2b) 

z 0 ~ ” ( z O )  = n’(zo) - 2s’(zo) + 0. ( 3 . 2 ~ )  

Next we construct a function f( z) which satisfies 

f i ( Z )  < f ( z )  <fI(Z) 0 < z < zo. (3.3) 
The choice is certainly not unique. For reasons which will become clear, we choose 
(figure 2) 

(3.4) 

where 

(3.5a) 

(3.56) 
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( 3 . 7 ~  j 

(3.76) 

correspond to the integrals in each region specified in (3.4), respectively. Now we 
take the limit z O + 0  in (3.7) to demonstrate that both C ,  and C, go to zero. Using 
]’Hospital’s theorem and (3.2) repeatedly, the calculation is straightforward, and we 
just give the final results: 

lim C, = lim[-6zn/n’(0)]’/’ = 0 ( 3 . 8 ~ )  

lim C, G l im(81/2Cl) = 0. (3.8b) 

From the obvious fact that I ( & )  is a continuous function of E we arrive at the 
conclusion. In any I D  system with a repulsive interaction between the L P  and fluid 
molecules there always exists at least one self-trapped state. This result is different from 
3~ systems for both the IG [3] and  real fluids [4]. 

4. The discussion of uniqueness 

In 13 3 we proved that I ( & )  has the limits x and 0 corresponding to the limits 0 and 
1 for E.  We have not been able to determine the condition on the equation of state 
or, equivalently, p”( G2),  which distinguishes whether or not the intersection of the 
horizontal line /3g(2mgpo/h2)’/’ and I ( & )  is unique. If it is, there is a single trapped 
state. Below we give an example for each possibility. Because zo is an  implicit function 
of E ,  working with I(z,) will be more convenient. The question revolves about whether 
or  not Z’(zo) is positive definite. If it is simply positive, and I‘(z,) vanishes on a set 
of positive measure, then degeneracy will occur. To proceed further, it is convenient 
to introduce the variable y = z/z,,. I(z,) then takes the form 

~ ( Z J  =z i /2  J ’  dyy1/2/[fi(yzn)-fi(zn)y1*’2. (4.1) 

The derivative with respect to zo is now given by 

The explicit evaluation of (4.2) for a specific equation of state is difficult and may not 
be possible. In the rest of this section we will use (4.2) to analyse two special cases, 
the ideal gas and the hard rod gas. 

4.1. Ideal gas 

The n-z relation for the I G  is simply 

n(z) = exp(-z) (4.3) 
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and 

f , (z )  = 1 -exp(-2). (4.4) 

I n  the following we will show that the quantity in the curly bracket of (4.2) is positive, 
proving that here the trapped state is unique. Define this quantity as a function F(z, , ,  y ) :  

F ( z o , y )  =3(1  -y)-3[exp(-z0y)-y e ~ ~ ~ - ~ ~ ~ l - y ~ ~ ~ ~ ~ p ( - ~ ~ ~ ~ - e ~ - ~ - ~ ~ ~ ~ l .  (4.5) 
It is easy to see that 

F(z , ,O)= F ( z o ,  1 ) = 0 .  

If F ( z o , y )  has the same sign in (0, 1) then I’(zo) has the same sign for all zo, and 
I (zo)  is monotonic. Thus the sufficiency condition for I(z,) to be monotonic is that 
a F / a y  = F, (zo,  y )  has only one root in (0, 1). It turns out that this is not too difficult 
to prove for the IC. F, ( zO, y )  = 0 is equivalent to 

(2ZO+ z b ) l [ 3  -3  exp(-zo) exp(-zo)l= exp(z0y). (4.7) 
It is easy to show that the left-hand side of (4.7) is greater than one when y = 0 and  
therefore (4.7) has one and only one root. Moreover, for any zo> 0, simple computation 
shows 

F, (zo ,  0) = 220-3 + 3  exp(-zo) + zo exp(-z,) > 0. (4.8) 

Noticing that all other quantities in the integrand of (4.2) are positive, we immediately 
get 

1’( zo) > 0. (4.9) 

The numerical result of I ( & )  for the ic is shown in figure 3. It is obvious that there 
is exactly one trapped state. 

4.2. Hard rod 

The exact local thermodynamics of the HR is given by Percus [5]. As mentioned earlier, 
it is one of the few fluids where this is known exactly. Within the LDA it takes the form 

(4.10) 

0 0.2 0.4 0.6 0.8 1 .o 
Reduced energy I C  I 

Figure 3. The normalisation I ( € )  for the ideal gas using a logarithmic scale. 
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a -  

- - 6 -  

c 4 -  

2 -  

0 -  
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- .  
I 

where P ( n )  = apon/(  1 - upon) and a is the length of an individual H R .  Here the integral 
o f f , ( z )  cannot be carried out directly as for the IC. After the transformation n = n(z) ,  
f , ( z )  changes to 

f i ( Z )  = f , ( n ,  

= i,” dn‘n’(dz/dn‘) 

= [P(1)  - P(n(z)) l /ap, .  (4.1 1) 

Also, in terms of n, F(z,,, y) now takes the form 

h L  n )  = (3/apo)CP(1) - P(n)l-  (3/apo)[z(n)/z(77)l[P(1) - P(77)I 

- ( n  - q ) z ( n )  (4.12) 

where q = n(zo) is determined by 

[P(1)-P(77)1(1/apo-E) = E ]n[P(l)/P(77)1. (4.13) 

We have not been able to analytically determine whether trapped states are unique for 
the H R .  We are able to show that the sufficiency condition is no longer satisfied, 
indicating the possibility of multiple states, as we approach the high-density limit, i.e. 

1 -up,<< 1. (4.14) 

One can then find that P( 1) >> P (  n )  if n is not too close to 1. With the further assumption 
that E is not close to zero, i.e. q is not too close to one, we have 

(4.15) z ( n )  =z z ( q )  21 P (1 )  

for such a value of n. Consequently, (4.12) is a finite negative number 

F ( q ,  n ) =  - (n  - q ) P ( l )  < O .  (4.16) 

Figure 4 shows the numerical result for up, = 0.01, 0.8142 and 0.96. It appears that 
pc = 0.8142/a plays the role of a ‘critical’ density. When p < p c ,  the H R  fluid is similar 

12 j 

0 0.2 0.4 0.6 0.8 1 
-2]-.- , 

Reduced energy i c )  

Figure 4. The normalisations [ ( E )  for the hard rod gas using a logarithmic scale. Curves 
are shown for three values of up,,:  0.01 (El), 0.8142 (0)  and 0.96 (U). The top curve 
( u p , ,  = 0.96), has a peak near E = 0.98. The middle curve up,, = 0.8142 corresponds to a 
‘critical’ density and there is a saddle point around E = 0.8. 
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to the ideal gas and has a unique trapped state. When p > p c ,  a bifurcation occurs 
and multiple trapped states appear in a certain parameter region. This result is not 
too surprising. In the high-density limit, apo = 1, the interaction becomes a periodic 
delta potential (Dirac comb). In  this case the LP cannot alter the local fluid density 
and  the spectrum has a band structure. We have not observed additional bifurcations 
(local extrema of I ( & ) )  for larger values of apo. 

In the next section we calculate the free energy and discuss the stability of the 
trapped states in the HR. The discussion naturally includes the case of the IG, which 
is the low-density limit of the HR,  i.e. up, = 0. 

5. Stability of the trapped states 

When multiple trapped states appear, the calculation of the free energy can distinguish 
which is the global minimum. In [3] a canonical ensemble was employed to discuss 
the stability of the three-dimensional ideal gas with respect to fluctuations in the local 
temperature or  density. Because the density and  wavefunction are coupled, fluctuations 
in density produce corresponding fluctuations in the energy eigenvalue of the trapped 
state. To investigate the stability of the trapped state with respect to energy fluctuations, 
Moore et a1 [3] defined the specific heat of the trapped state as follows: 

c v =  POg(d&/dT)N,V 

= ~ o g [ d ~ / d ~ ( ~ ) l [ d ~ ( ~ ) / d T l ~ , "  

= - [ P o d  ( E I /  Tl(dI( E )/ dE 1 - I .  (5.1) 

Clearly, when I ( & )  has positive slope the specific heat is negative and  the state is 
unstable. They also found that the slope of I ( & )  has the opposite sign to the slope of 
A F ( & ) / p , g  everywhere. Here A F  is the free energy difference between the actual free 
energy and  that for a uniform system lacking an  LP. 

Their proof is not completely rigorous in handling the thermodynamic limit. This 
point is discussed in more detail by Reese and  Miller [4] where it is shown that the 
canonical ensemble is equivalent to the grand canonical ensemble at the thermodynamic 
limit. Within LDA, the H R  gas has the same energy as an IG, i.e. E ,  but has a different 
free energy. Therefore (5.1) is also true for the HR. From figure 4 we conclude 
immediately that the trapped state with the intermediate value of E has a negative 
specific heat and hence is unstable. Because the free energy is obviously unbounded 
from above (consider the delta wavefunction which is the limit of the localised state) 
this state can only be a local maximum. 

With regard to the other two states, we have to distinguish between them numerically. 
Because our wavefunction is defined in the infinite space (see (2.11)) we use the grand 
canonical ensemble directly. The Gibbs free energy is defined by 

"==(A.-] dzpo(p-pO) 1 

POg 

where P is defined in (4.10). The numerical result is given in figure 5 .  Clearly the 
state corresponding to the smallest value of E has the lower free energy and is the 
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1 0 -  

08 - 
P I '  
d 2 0 6 -  
a 

0 4  - 

0 2  - 

4- . 
0 0.2 0.4 0.6 0.8 1 .0 

Reduced energy ( E  i 

Figure 5. The scaled free energy S G / p , , g  for the hard rod gas. The valleys (peaks)  in 
figure 4 correspond to  peaks (valleys) here. 

global minimum. The other is a local minimum, i.e. it is metastable. Although we 
cannot prove that the slopes of I ( & )  and A F  have opposite sign, plots of the free 
energy against E for the H R  show exactly the same behaviour. The reason for this is 
far from clear to us. In contrast with 3~ systems, metastable states d o  not always exist 
here; they only appear in a very narrow range of density (po> pc) ,  Therefore, for the 
low-density H R  system, which includes the IC as the limit up,  = 0, the trapped state is 
always stable. 

In  principle, the classification of the multiple trapped states can be carried out by 
calculating the second-order variation to the free energy. Unfortunately, neither we 
nor Moore et a1 [3] have been able to d o  this. The constraint introduced by the 
normalisation condition makes the problem especially thorny. 
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